Introduction

Randomized Algorithms: Week 1 Summer HSSP 2023
 Emily Liu

About this class

- Survey class of randomized algorithms
- Each week is a different algorithm
- Alternative view of programming/algorithms
- Prerequisites:
- Some programming experience
- Level: AP Computer Science, USACO Bronze, or equivalent
- Comfortable with probability concepts
- We'll do some review!

About me

- Emily Liu
- From California (Bay Area!)
- Undergrad at MIT (co2024), doubling Computer Science + Math
- Currently: software internship, machine learning research

About YOU

- Grade
- Where are you dialing in from?
- First time at HSSP?
- Preferred programming language OR best thing you ate this week

What is a randomized algorithm?

Deterministic Algorithms

Randomized Algorithms

Question: Why randomization?

1. Deterministic algorithms can be too slow
2. Randomized algorithms are good enough

Two classes of randomized algorithms:

Monte Carlo

Guaranteed runtime, Probabilistic correctness

Las Vegas

Probabilistic runtime, Guaranteed correctness

Monte Carlo Algorithms

- Will always run in polynomial time
i.e: $\mathrm{O}\left(\mathrm{n}^{\wedge} \mathrm{k}\right)$ where k is a constant
- The probability of being wrong is upper-bounded by some small value ε
- Biases:
- False-biased: Always correct when returning false, sometimes correct when returning true
- True-biased: Always correct when returning true, sometimes correct when returning false
- Unbiased: Symmetric probability of success for true or false return

Las Vegas Algorithms

- Always returns the correct output
- The algorithm itself may run for longer or shorter depending on
(1) The input
(2) The random numbers
- We look at the expected value of the runtime.
- Formally, this should still be polynomial time.

Some silly examples

Task: Given an array A of length N and a target value k , determine if the value k exists in A.

```
contains(A, k):
    i = randInt(0 ... N-1)
    return (A[i] == k)
```

Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this a false-biased, true-biased, or unbiased algorithm? Why?
- How can we be more confident in our answer, without writing any new code?

Some more silly examples

Task: Given an array A of length N with exactly one value equal to a target value k , return the index i such that $A[i]=k$.

```
find_index(A, k):
    i = randInt(0 ... N-1)
    return i if (A[i] == k) else find_index(A, k)
```

Questions:

- Is this a Las Vegas or Monte Carlo algorithm?
- Is this algorithm guaranteed to terminate?
- How many times in expectation will the algorithm repeat?

Mathematical building blocks

Random variables, probability distributions

Random variable: variable that can take on multiple values, determined by a random function

Are described through probability mass functions (discrete) or probability density functions (continuous)

Examples

- Outcome of a coin toss or dice roll
- Output of Monte Carlo Algorithms
- Runtime of Las Vegas Algorithms

Uniform random variables

Discrete uniform distribution
X takes on n possible values, all with equal likelihood $(1 / n)$.
contains (A, k):

$$
\begin{aligned}
& i=\operatorname{randInt}(0 \ldots \mathrm{~N}-1) \\
& \text { return }(\mathrm{A}[\mathrm{i}]==\mathrm{k})
\end{aligned}
$$

randlnt is a discrete uniform random variable that takes on values from 0 through $\mathrm{N}-1$.

Geometric random variables

Models a process where you repeat something independently, and terminate at each step with a probability p.

Example: Toss a fair coin until it lands on heads.

```
find_index(A, k):
    i = randInt(0 ... N-1)
    return i if (A[i] == k) else find_index(A, k)
```

The number of times find_index has to run is a geometric random variable. What is p ?

Expected value

Given a random variable X ,
$E[X]=\operatorname{sum}\left(p(x)^{*} x\right)$ over all values x that X can take on.
Linearity of expectation: $E[a X+b Y]=a E[X]+b E[Y]$

Exercises:

1. Calculate expected value of a uniform random variable that takes on values from 1 to N, where N is a positive integer.
2. Calculate expected value of a geometric random variable with a probability parameter p.

Revisiting contains

If A does not contain k, algorithm is always correct.

$$
\begin{aligned}
& \text { contains }(\mathrm{A}, \mathrm{k}): \\
& \mathrm{i}=\operatorname{randInt}(0 \ldots \mathrm{~N}-1) \\
& \quad \text { return }(\mathrm{A}[\mathrm{i}]==\mathrm{k})
\end{aligned}
$$

Assume A contains one copy of k. We run the function t times.

$$
P(\text { incorrect } \mid A \text { contains } k)=(1-1 / n)^{\wedge t}
$$

Probability of failure gets smaller as t increases - but how much?

Revisiting contains

Recall: deterministic algorithm takes n computations
Let $\mathrm{t}=\mathrm{n}$: the probability of getting wrong is $(1-1 / \mathrm{n})^{\wedge} \mathrm{n}$
-> e^{-1} as n goes to infinity
approx. 0.3 , not very good...
Reason: Probability of success $(1 / n)$ is very low.
Suppose there were coccurrences of k in A; probability of failure goes to e^{-c}

- Increases as c increases, which makes sense!

Preview of course

Week 2: Randomized Quicksort

Task: Given a list of comparable values, sort them in ascending order.

Many sorting algorithms already exist

- Selection sort ($\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$)
- Insertion sort ($\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$)
- Merge sort (O(n log n))

Quick sort - $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm with some randomness

Week 3: Matrix Multiplication

Task: Given three matrices A, B, and C , determine whether or $\operatorname{not} \mathrm{AB}=\mathrm{C}$.

Traditional matrix multiplication: $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$.

Random: Frievalds' algorithm: $O\left(n^{\wedge} 2\right)$.

Week 4: Game Tree Evaluation

Game tree = rooted tree where every internal node is a MIN or MAX operator

MIN: even distance from root
MAX: odd distance from root
Leaves are numerical values, and at each internal node we apply the
 operation to all incoming values.

Goal: determine the value at the root.

Computer
Move

Week 5: Primality Testing

Task: Given a positive integer N, determine whether or not N is prime.

Brute force: $\mathrm{O}($ sqrt(N)) - test every number up to round(sqrt(N)).

Improvement: Memoize prime numbers, test only the primes up to round(sqrt(N))

Randomization can get us faster algorithms!

Week 6: Boolean Satisfiability

Task: Given a boolean expression, determine whether or not there exists an assignment of the variables that makes the expression True

Brute force solution: Given n variables, $\mathrm{O}\left(2^{\wedge} \mathrm{n}\right)$.

- Exponential runtime :(
- NP complete: don't really have a better (deterministic) solution

Solution: randomization!
(x OR y OR z) AND (x OR $\bar{y} O R z$) AND
(x OR y OR \bar{z}) AND (x OR $\bar{y} O R \bar{z}$) AND
($\bar{x} O R$ y $O R z$) AND ($\bar{x} O R \bar{y} O R \bar{z}$)

